

Course Structure: Four Semester Course

Semester – I

Course Code	Marks	Course Title	Credits
ENV 501	100	Application of Bio statistics in Environmental Science	3
ENV 502	100	Fundamentals of Environmental Chemistry & Chemical	3
		analysis	
ENV503	100	Biophysics for Environmental Sciences	3
ENV 504	100	General Ecology and Environmental Biology	3

Semester – II

Course Code	Marks	Course Title	Credits
ENV 505	100	Natural Resources & Management	3
ENV 506	100	Environmental Geo-science & Disaster management	3
ENV 507	100	Methodology & Instrumentation for Environmental analysis	3
		& monitoring	
ENV 508	100	Eco- Planning & Sustainable Development	3

Semester – III

Course Code	Marks	Course Title	Credits
ENV601	100	Environmental Pollution & Control	3
ENV602	100	Environmental Impact Assessment	3
ENV603	100	Environmental Law & Management	3
ENV604	100	Waste Monitoring & Management	3

Semester – IV

Course Code	Marks	Course Title	Credits
ENV605	100	Environmental Health & Toxicology	3
ENV606	100	Geographical Information System & Remote Sensing	3
ENV607	100	Forest & Wildlife conservation	3
ENV608	100	Dissertation/Thesis	8
Course Code	Marks	Elective*	Credits
ENV651*	100	Environmental Microbiology & Bio-remedial Technology	3
ENV652*	100	Water and Waste water treatment Processes	3

Course Outcomes Master of Science Environmental Science

Semester – I

Paper I: Application of Bio statistics in Environmental Science

CO 1: Understand the basic statistical concepts, including measures of central tendency, variability, probability, and hypothesis testing.

CO 2: Understand the importance of biostatistics in designing experiments, analyzing environmental data, and making informed decisions in environmental science.

CO 3: Students should be capable of collecting and managing environmental data, including data on air quality, water quality, biodiversity, and ecological variables.

CO 4: Apply Descriptive Statistics: Students should be able to use descriptive statistics to summarize and present environmental data effectively, including creating graphs and tables.

Paper II: Fundamentals of Environmental Chemistry & Chemical analysis

CO 1: Understand the principles of environmental chemistry, including chemical reactions, thermodynamics, and kinetics as they relate to environmental processes.

CO 2: Understand the common environmental pollutants, such as heavy metals, organic compounds, and nutrients, and understand their sources and impacts on ecosystems and human health.

CO 3: Understand the proficient in explaining chemical equilibrium and its relevance to environmental systems, including acid-base equilibria and redox reactions.

CO 4: Understand the transport and fate of chemicals in the environment, including processes like diffusion, advection, and dispersion.

CO 5: Students should be capable of performing basic chemical analyses commonly used in environmental science, such as titrations, spectrophotometry, and chromatography.

Paper III: Biophysics for Environmental Sciences

CO1: Understand the fundamental concepts and principles of biophysics, including molecular interactions, energy transfer, and structural biology.

CO 2: Understand the relevance of biophysics in the context of environmental science, particularly in understanding biological and physical interactions in the environment.

CO 3: Understand the biological molecules are involved in environmental processes such as nutrient cycling, decomposition, and pollutant degradation.

CO 4: Understand the Analyze the flow of energy through ecosystems, including primary production, trophic interactions, and the transfer of solar energy to biological systems.

Paper IV: General Ecology and Environmental Biology

CO 1: Understand the fundamental principles of ecology, including ecological levels of organization, energy flow, nutrient cycling, and population dynamics.

CO 2: Understand the structure and function of ecosystems, including the roles of producers, consumers, decomposers, and the flow of energy and materials within ecosystems.

CO 3: Understand the concept of biodiversity, including its importance for ecosystem stability, resilience, and human well-being.

CO 4: Understand the interactions among species in ecological communities, including competition, predation, mutualism, and coexistence.

Semester – II

Paper I: Natural Resources & Management

CO 1: Understanding of natural resources, including their types, distribution, and significance to human societies and the environment.

CO 2: Understand the principles of sustainability and their application to the management of natural resources, including the concept of sustainable development.

CO 3: Understand the methods for assessing and quantifying natural resources, including geological surveys, ecological assessments, and hydrological studies.

CO 4: Understand the economic principles governing natural resource allocation, including supply and demand dynamics, cost-benefit analysis, and market forces.

CO 5: Understand the strategies and techniques for conserving and preserving natural resources to ensure their availability for future generations.

Paper II: Environmental Geo-science & Disaster management

CO 1: Understand the comprehensive understanding of environmental geoscience, including the study of geological processes, landforms, and their impact on the environment.

CO 2: Identify and assess geological hazards, such as earthquakes, volcanic eruptions, landslides, tsunamis, and ground subsidence, and understand their causes and consequences.

CO 3: Understand the techniques for assessing and mapping geological hazards and their associated risks to human populations, infrastructure, and ecosystems.

CO 4: Understand national and international policies, regulations, and frameworks related to disaster management and response.

Paper III: Methodology & Instrumentation for Environmental analysis & monitoring

CO 1: Familiarity with a variety of instruments and equipment used for environmental analysis and monitoring, including spectroscopy, chromatography, sensors, and data loggers.

CO 2: Learn to develop and adapt analytical methods suitable for different environmental samples and parameters, considering factors like sensitivity, selectivity, and precision.

CO 3: Understand the range of analytical techniques, such as spectrophotometry, chromatography, titration, and electrochemical analysis, and understand their applications in environmental analysis

CO 4: Understand the analytical techniques to assess the impact of environmental pollutants and contaminants on ecosystems, human health, and regulatory compliance.

Paper IV: Eco- Planning & Sustainable Development

CO 1: Develop a deep understanding of the concept of sustainability, encompassing environmental, economic, and social dimensions.

CO 2: Understand a solid foundation in eco-planning principles, including land use, resource management, and urban design.

CO 3: Understand the techniques for assessing the environmental impacts of development projects and land use planning decisions.

CO 4: Understand the Collaborate with professionals from various disciplines, such as urban planning, ecology, and social sciences, to develop holistic sustainable development solutions.

Semester – III

Paper I: Environmental Pollution & Control

CO 1: Identify and classify various sources and types of environmental pollution, including air pollution, water pollution, soil pollution, and noise pollution.

CO 2: Understand the techniques for monitoring and assessing pollutant levels in different environmental media, including air, water, and soil.

CO 3: Understand the ecological, human health, and economic consequences of pollution on ecosystems and communities.

CO 4: Understand the strategies and technologies for preventing and controlling pollution at its source, such as emission controls and waste management practices.

Paper II: Environmental Impact Assessment

CO 1: Understanding of the principles, purpose, and importance of Environmental Impact Assessment (EIA) in sustainable development.

CO 2: Understand the legal and regulatory frameworks governing EIA processes at local, national, and international levels.

CO 3: Understand the effective methods for engaging stakeholders, including local communities, government agencies, and project proponents, in the EIA process.

CO 4: Understand the initial stages of EIA, including project screening to determine if an EIA is required and scoping to identify potential environmental impacts.

CO 5: Understand the predict and assess potential environmental impacts, both positive and negative, resulting from development activities.

चौधरी महादेव प्रसाद महाविद्यालय C. M. P. DEGREE COLLEGE

(A Constituent P.G. College, University of Allahabad) Under the Strengthening Component of DBT Star College Scheme

Website: www.cmpcollege.ac.in

Paper III: Environmental Law & Management

CO 1: Understanding of environmental laws and regulations at local, national, and international levels.

CO 2: Understand the legal frameworks governing environmental protection, including statutes, treaties, and administrative regulations.

CO 3: Understand the requirements and procedures for achieving compliance with environmental laws and regulations.

CO 4: Understand the legal requirements and processes for conducting Environmental Impact Assessments (EIAs) and obtaining permits for development projects.

CO 5: Understand the development and implementation of Environmental Management Systems (EMS) to achieve continuous environmental improvement.

Paper IV: Waste Monitoring & Management

CO 1: Understand the classification of waste materials, including hazardous, non-hazardous, municipal, industrial, and electronic waste.

CO 2: Understand the factors contributing to waste generation, including population growth, industrial processes, and consumption patterns.

CO 3: Understand the different waste collection systems, such as curbside pickup, recycling centers, and drop-off locations, and their efficiency.

CO 4: Understand the emerging technologies and innovations in waste management, such as smart waste systems and circular economy practices.

Semester – IV

Paper I: Environmental Health & Toxicology

CO 1: Understanding of the field of environmental health, including its scope, importance, and relevance to public health.

CO 2: Understand the environmental factors, including air and water quality, toxic chemicals, and hazardous substances, that can impact human health.

CO 3: Understand the fundamental principles of toxicology, including dose-response relationships, exposure routes, and mechanisms of toxicity.

CO 4: Understand the processes of absorption, distribution, metabolism, and excretion (ADME) of toxic substances in the body, as well as their mechanisms of action.

Paper II: Geographical Information System & Remote Sensing

CO 1: Develop a solid understanding of the principles, concepts, and applications of Geographic Information Systems (GIS) and Remote Sensing (RS).

CO 2: Understand the acquire and collect geospatial data from various sources, including satellite imagery, aerial photography, and field surveys.

CO 3: Understand the Gain proficiency in organizing, storing, and managing geospatial data in GIS databases and remote sensing archives.

CO 4: Understand the methods for integrating different types of geospatial data from multiple sources to create comprehensive spatial databases.

CO 5: Understand the application of GIS and remote sensing to monitor environmental changes, including deforestation, urban expansion, and climate impacts.

Paper III: Forest & Wildlife conservation

CO 1: Understanding the forest ecosystems, including their biodiversity, structure, and ecological processes.

CO 2: Understand the wildlife ecology, behavior, and habitat requirements in different ecosystems.

CO 3: Understand the principles and techniques for sustainable forest management, including timber harvesting, regeneration, and silviculture.

CO 4: Understand the principles of conservation biology and the importance of genetic diversity in wildlife populations.

CO 5: Understand the various threats to forests and wildlife, including habitat loss, fragmentation, invasive species, pollution, and climate change.

Paper IV: Dissertation/Thesis

CO 1: Develop the ability to design a research study that addresses a specific research question or problem.

CO 2: Formulate a clear and well-structured research proposal that outlines the research objectives, methodology, and expected outcomes.

CO 3: Understand and adhere to ethical guidelines for research involving human subjects, animals, or sensitive data.

CO 4: Choose appropriate data collection methods, instruments, and techniques for gathering relevant data.

CO 5: Develop critical thinking skills to evaluate and interpret research findings within the context of existing knowledge.